Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Journal of Public Health in Africa ; 14(S2) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20238990

ABSTRACT

Introduction. Dengue Hemorrhagic Fever (DHF) is still a public health problem even in the era of the COVID-19 pandemic in 2020, including in Indonesia. This study aimed to analyze the incidence of DHF based on the integration of climatic factors, including rainfall, humidity, air temperature, and duration of sunlight and their distribution. Materials and Methods. This was an ecological time series study with secondary data from the Surabaya City Health Office covering the incidence of DHF and larva-free rate and climate data on rainfall, humidity, air temperature, and duration of sunlight obtained from the Meteorology and Geophysics Agency (BMKG). Silver station in Surabaya, the distribution of dengue incidence during 2018-2020. Results and Discussion. The results showed that humidity was correlated with the larvae-free rate. Meanwhile, the larva-free rate did not correlate with the number of DHF cases. DHF control is estimated due to the correlation of climatic factors and the incidence of DHF, control of vectors and disease agents, control of transmission media, and exposure to the community. Conclusions. The integration of DHF control can be used for early precautions in the era of the COVID-19 pandemic by control-ling DHF early in the period from January to June in Surabaya. It is concluded that humidity can affect the dengue outbreak and it can be used as an early warning system and travel warning regarding the relative risk of DHF outbreak.Copyright © the Author(s), 2023.

2.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2322790

ABSTRACT

To investigate the sufficiency of ventilation during the COVID-19 pandemic for school children, a field study was conducted in 37 classrooms of 11 Dutch secondary schools between October 2020 and June 2021. All the classrooms were visited twice, before and after a three-month national lockdown, when different measures against COVID-19 were taken by the schools. For each visit, both CO2 concentrations and air temperature were measured during school hours, and detailed information on building/classroom characteristics, occupancy, and COVID-19 measures was collected. Results show that before the lockdown, CO2 concentrations in most classrooms exceeded the threshold levels of the Dutch Fresh Schools guidelines. The significantly lower CO2 concentrations measured after the lockdown, however, were mainly due to the decreased occupancy. Moreover, with windows and doors always being opened on purpose, the performance of different ventilation regimes could not be compared, while such behaviour may also lead to thermal discomfort for school children. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

3.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2326754

ABSTRACT

Under the influence of COVID-19, it is recommended to ventilate to reduce the risk of infection in the room. In an air-conditioned room, window open can increased the ventilation rate that caused by indoor and outdoor temperature difference. However, there is a concern that opening window in the air-conditioned room will increase the heating and cooling load due to air leakage. In addition, it is difficult to maintain the appropriate ventilation rate because the outdoor air temperature changes time to time. To solve this problem, we have developed an automatic window opening system to control the natural ventilation rate. In this study, actual measurements were conducted to understand the operating performance of the system, and its effect on the indoor thermal environment. As a result, it was confirmed that the ventilation rate could be controlled by this system. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

4.
Bangladesh Journal of Medical Science ; 22(2):385-391, 2023.
Article in English | EMBASE | ID: covidwho-2318236

ABSTRACT

Objective: The coronavirus disease (COVID-19) is a problem for the health care systems of many countries around the world. Seasonal nature of influenza and other the respiratory viral diseases is commonly known. The nature of the relationship between the frequency of registration of cases of COVID-19 and natural factors is still being studied by researchers. The purpose is to determine the influence of air temperature, relative humidity, wind speed, and atmospheric pressure on the incidence of the coronavirus disease COVID-19 in the conditions of Ukraine. Materials and methods. Official reports of the Ministry of Health of Ukraine and data from daily monitoring of meteorological indicators conducted by the Sumy Regional Hydrometeorology Center were used in the paper. Descriptive and analytical ways of epidemiological method of investigation were applied. The search for parameters of interrelation between the frequency of registration of COVID-19 cases and meteorological cases took place using of program "Statistica", namely the relevant tools of this program: "Analysis"/ "Multiple regression". Results and Discussion: In the period under study from March 25, 2020 to December 31, 2021 in Sumy Oblast of Ukraine, three waves of rise in the incidence were registered. In the third wave of rise in the incidence, in autumn 2021 the frequency of registration of COVID-19 cases reached 1684.9 per 100 thousand of people, despite the fact that almost 70 % of the population had already recovered or were vaccinated. Meteorological factors in the conditions of Ukraine have little influence on the rate of spread of COVID-19. The value of multiple correlation coefficients was within those limits, which are considered moderate in terms of influence. A moderate inverse correlation was established between the frequency of registration of COVID-19 cases and indicators of air temperature, and a direct correlations-with indicators of relative air humidity. Conclusion(s): In the conditions of Ukraine, the studied meteorological factors (air temperature, relative humidity, wind speed, atmospheric pressure) indirectly influenced the intensity of the epidemic process of COVID-19. the strength of this influence was either weak or moderate.Copyright © 2023, Ibn Sina Trust. All rights reserved.

5.
Environmental Forensics ; 24(1-2):9-20, 2023.
Article in English | ProQuest Central | ID: covidwho-2303474

ABSTRACT

The coronavirus pandemic has infected more than 100 million people worldwide with COVID-19, with millions of deaths across the globe. In this research, we explored the effects of environmental and weather variables with daily COVID-19 cases and COVID-19 fatalities in Istanbul, Turkey. Turkey has the 8th highest number of COVID-19 cases globally, with the highest infections and deaths in Istanbul. This may be the first study to conduct a comprehensive investigation for environmental quality (air quality pollutants, e.g., PM2.5 and PM10, ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, etc.), weather parameters (temperature, humidity) and COVID-19 in Turkey. The authors collected meteorological data from 11 March 2020 to 8 February 2021 and COVID-19 data from Istanbul and other regions. The results from empirical estimations, correlation analysis, and quantile on quantile techniques support that air quality and temperature significantly influence COVID-19 deaths in Istanbul. This research may help policymakers and health scientists to take specific measures to reduce the spread of coronavirus across different global cities.The effects of air quality on COVID-19 in Istanbul was investigated.The study applied correlation and quantile on quantile techniques over daily data.Temperature significantly induces the spread of COVID-19 in Istanbul at all quantiles.Air quality and Nitrogen are positively linked with COVID-19 new cases.

6.
17th IBPSA Conference on Building Simulation, BS 2021 ; : 2757-2766, 2022.
Article in English | Scopus | ID: covidwho-2297280

ABSTRACT

Ultraviolet Germicidal Irradiance (UVGI) is the effective technique of inactivating disease-causing bacteria, mould spores, fungi, and viruses using ultraviolet radiation. In this study, we seek to quantify the efficacy and COVID-19 infection risk reduction achieved by UVGI in the upper unoccupied zone of a room so that we may specify the type and placement of UVGI emitters optimally. We present a computational fluid dynamics (CFD) based approach to model disinfection of aerosolized pathogens in a non-uniform ultraviolet field with mixing driven by air exchange and temperature gradients. We validate our CFD against simple calculation methods for UVGI effectiveness in well mixed spaces, and we integrate it with the Wells-Riley model of airborne infection risk to assess the relative benefit of UVGI with and against other measures. We demonstrate an order of magnitude reduction in infection risk as a result of applying UVGI, as well as the ability to quantify infection risk in non-well-mixed settings where simplified calculations methods do not apply. © International Building Performance Simulation Association, 2022

7.
Regional Science Policy & Practice ; 15(3):456-473, 2023.
Article in English | ProQuest Central | ID: covidwho-2297244

ABSTRACT

The present study aims to measure the impact of climate characteristics on the prevalence rate of coronavirus disease 2019 (COVID‐19) in Brazilian states given the exogenous nature of these variables. We used a daily panel for the period from March 10 to April 10, 2020, the first phase of the pandemic, as there were few intervention policies to contain the spread of COVID‐19 during that period, and it was estimated through generalized least squares (GLS) spatial models to control the presence of spatial spillover, first‐order autoregressive errors, and correlation between cross‐sections. Considering the COVID‐19 incubation period and the time it takes for COVID‐19 symptoms to manifest, the econometric models were estimated using the 14‐, 11‐, and 7‐day moving averages of the climate variables. The results showed that increases of 1% in the solar incidence, average temperature, and relative humidity of the air reduced COVID‐19 prevalence rates by 0.16%, 0.049%, and 0.22%, respectively, considering the 11‐day moving average.Alternate :El presente estudio tiene como objetivo medir el impacto de las características climáticas en la prevalencia de la enfermedad por coronavirus 2019 (COVID‐19) en los estados brasileños, dada la naturaleza exógena de estas variables. Se utilizó un panel diario para el período comprendido entre el 10 de marzo y el 10 de abril de 2020, la primera fase de la pandemia, ya que hubo pocas políticas de intervención para contener la propagación de COVID‐19 durante ese período, y se estimó mediante modelos espaciales de mínimos cuadrados generalizados (GLS) para controlar la presencia de spillover espacial, errores autorregresivos de primer orden y la correlación entre muestras representativas. Teniendo en cuenta el periodo de incubación de COVID‐19 y el tiempo que tardan en manifestarse los síntomas de COVID‐19, los modelos econométricos se estimaron utilizando las medias móviles de 14, 11 y 7 días de las variables climáticas. Los resultados mostraron que aumentos del 1% en la incidencia solar, la temperatura media y la humedad relativa del aire redujeron la prevalencia de COVID‐19 en un 0,16%, 0,049% y 0,22%, respectivamente, teniendo en cuenta la media móvil de 11 días.Alternate :抄録本稿では、ブラジルの各州における新型コロナウイルス感染症 (COVID‐19)の罹患率に対する気候特性の影響を、これらの変数の外因性を考慮して、測定する。パンデミックの第一波である2020年3月10日~4月10日の期間は、COVID‐19の拡散を封じ込めるための介入政策がほとんどなかったが、この期間の毎日のパネルデータを使用し、一般化最小二乗法 (GLS)による空間モデルを用いて、空間スピルオーバー、1次自己回帰のエラー、および横断面間の相関の存在を制御して、推定した。COVID‐19の潜伏期間と発症までにかかる時間を考慮し、気候変数の14、11、7日間の移動平均を用いて計量経済モデルを推定した。結果から、11日間の移動平均を考慮すると、太陽光の入射、平均気温、空気中の相対湿度の1%増加が、それぞれCOVID‐19罹患率を0.16%、 0.049%、0.22%減少させることが示された。

8.
Atmosphere ; 14(2):311, 2023.
Article in English | ProQuest Central | ID: covidwho-2277674

ABSTRACT

In preparation for the Fourth Industrial Revolution (IR 4.0) in Malaysia, the government envisions a path to environmental sustainability and an improvement in air quality. Air quality measurements were initiated in different backgrounds including urban, suburban, industrial and rural to detect any significant changes in air quality parameters. Due to the dynamic nature of the weather, geographical location and anthropogenic sources, many uncertainties must be considered when dealing with air pollution data. In recent years, the Bayesian approach to fitting statistical models has gained more popularity due to its alternative modelling strategy that accounted for uncertainties for all air quality parameters. Therefore, this study aims to evaluate the performance of Bayesian Model Averaging (BMA) in predicting the next-day PM10 concentration in Peninsular Malaysia. A case study utilized seventeen years' worth of air quality monitoring data from nine (9) monitoring stations located in Peninsular Malaysia, using eight air quality parameters, i.e., PM10, NO2, SO2, CO, O3, temperature, relative humidity and wind speed. The performances of the next-day PM10 prediction were calculated using five models' performance evaluators, namely Coefficient of Determination (R2), Index of Agreement (IA), Kling-Gupta efficiency (KGE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The BMA models indicate that relative humidity, wind speed and PM10 contributed the most to the prediction model for the majority of stations with (R2 = 0.752 at Pasir Gudang monitoring station), (R2 = 0.749 at Larkin monitoring station), (R2 = 0.703 at Kota Bharu monitoring station), (R2 = 0.696 at Kangar monitoring station) and (R2 = 0.692 at Jerantut monitoring station), respectively. Furthermore, the BMA models demonstrated a good prediction model performance, with IA ranging from 0.84 to 0.91, R2 ranging from 0.64 to 0.75 and KGE ranging from 0.61 to 0.74 for all monitoring stations. According to the results of the investigation, BMA should be utilised in research and forecasting operations pertaining to environmental issues such as air pollution. From this study, BMA is recommended as one of the prediction tools for forecasting air pollution concentration, especially particulate matter level.

9.
Journal of Geophysical Research Atmospheres ; 128(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2257703

ABSTRACT

The radiative effects of the large‐scale air traffic slowdown during April and May 2020 due to the international response to the COVID‐19 pandemic are estimated by comparing the coverage (CC), optical properties, and radiative forcing of persistent linear contrails over the conterminous United States and two surrounding oceanic air corridors during the slowdown period and a similar baseline period during 2018 and 2019 when air traffic was unrestricted. The detected CC during the slowdown period decreased by an area‐averaged mean of 41% for the three analysis boxes. The retrieved contrail optical properties were mostly similar for both periods. Total shortwave contrail radiative forcings (CRFs) during the slowdown were 34% and 42% smaller for Terra and Aqua, respectively. The corresponding differences for longwave CRF were 33% for Terra and 40% for Aqua. To account for the impact of any changes in the atmospheric environment between baseline and slowdown periods on detected CC amounts, the contrail formation potential (CFP) was computed from reanalysis data. In addition, a filtered CFP (fCFP) was also developed to account for factors that may affect contrail formation and visibility of persistent contrails in satellite imagery. The CFP and fCFP were combined with air traffic data to create empirical models that estimated CC during the baseline and slowdown periods and were compared to the detected CC. The models confirm that decreases in CC and radiative forcing during the slowdown period were mostly due to the reduction in air traffic, and partly due to environmental changes.Alternate :Plain Language SummaryContrails produced by aircraft flying in cold but humid air both warm the atmosphere by reducing infrared radiation emitted back into space and cool it by increasing reflected sunlight. Due to the decrease in air traffic during the first months of the COVID pandemic, fewer satellite‐detectable contrails were produced compared to pre‐pandemic times, and thus the radiative effects of contrails were also diminished. But changes in the overall temperature and humidity at aircraft cruise altitudes also affect contrail formation and might explain at least some of the observed decrease in contrail coverage during April and May 2020. Analysis of satellite imagery showed that the thickness and ice‐crystal size of the contrails during the COVID period did not change much from pre‐pandemic contrails. The regional contrail coverage was accurately simulated from a combination of the estimated air traffic activity at cruise altitude and the probable frequency of when atmospheric conditions were favorable for contrail formation. This simulation confirms that most of the decrease in contrails and their radiative effects during the COVID‐related slowdown period were due to the reduction in air traffic, and to a lesser extent to changes in temperature and humidity at cruise altitude during April and May 2020.

10.
Buildings ; 13(2):272, 2023.
Article in English | ProQuest Central | ID: covidwho-2278630

ABSTRACT

Indoor air quality is a crucial factor when evaluating habitability, especially in developed countries, where people spend most of their time indoors. This paper presents a novel double skin façade (DSF) system that combines physical and photocatalytic filtering strategies. The air purification system is made up of fixed slats that are both solar protection and air purification system. The objective of this work is to determine the thermal behaviour of the proposed system, so that its suitability for use in various environments may be assessed. This was carried out using a physical 1:1 scale model and a computational fluid dynamics (CFD) model. The maximum temperature inside the scale model cavity was 17–20 °C higher than outdoor air. Additionally, it was discovered that the airflow through the DSF would require forced ventilation. To determine the emissivity values of the photocatalytic coating, additional experimental measurements were made. The CFD model was tested for summer and winter conditions in Barcelona, Chicago, and Vancouver. The average increase in the intake air temperature was around 14.5 °C in winter and 12 °C in summer, finding that the system has its main use potential in temperate or cold areas with many hours of solar radiation.

11.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2263549

ABSTRACT

Background: In the COVID pandemic, patients have had to rely on remote consultations to help them to live with their condition. Aim(s): We aimed to explore how a connected system (A4A+) linking smart devices (inhaler/watch/peak flow meter) could support asthma self-management. Method(s): The A4A+ system collected data from smart devices that could be shared with practices in a pdf attached to patients' electronic health records. We recruited 10 patients via social media, observed their usage of the system over a month, and undertook baseline and exit interviews. We also interviewed 3 GPs and an asthma nurse for their views on the report format. Thematic analysis used the Unified Theory of Acceptance and Use of Technology (UTAUT) model. Result(s): 7517 self-management data-points (asthma symptoms, PEFR, inhaler usage, exercise intensity, heart rate, sleeping pattern, body/air temperature) were collected from 10 patients though recording reduced over the month. Most patients chose to monitor their reliever inhaler rather than the preventer. Patients felt 'positive', found it 'easy' to use the system and chose to use devices they thought were "accurate". Monitoring adjustments to medication, having asthma (or COVID) symptoms triggered and motivated them to adopt the system. Clinicians wanted an overall asthma score/status and reliever usage on the report. Conclusion(s): A connected system could enable flexible digital approaches to care by providing on-going selfmanagement data to support remote consultation. However, providing users with confidence in the 'accuracy' of systems is needed to maintain patients' motivation to use the system.

12.
Environmental Pollution ; 316, 2023.
Article in English | Scopus | ID: covidwho-2242802

ABSTRACT

This study aimed to evaluate the levels and phenomenology of equivalent black carbon (eBC) at the city center of Augsburg, Germany (01/2018 to 12/2020). Furthermore, the potential health risk of eBC based on equivalent numbers of passively smoked cigarettes (PSC) was also evaluated, with special emphasis on the impact caused by the COVID19 lockdown restriction measures. As it could be expected, peak concentrations of eBC were commonly recorded in morning (06:00–8:00 LT) and night (19:00–22:00 LT) in all seasons, coinciding with traffic rush hours and atmospheric stagnation. The variability of eBC was highly influenced by diurnal variations in traffic and meteorology (air temperature (T), mixing-layer height (MLH), wind speed (WS)) across days and seasons. Furthermore, a marked "weekend effect” was evidenced, with an average eBC decrease of ∼35% due to lower traffic flow. During the COVID19 lockdown period, an average ∼60% reduction of the traffic flow resulted in ∼30% eBC decrease, as the health risks of eBC exposure was markedly reduced during this period. The implementation of a multilinear regression analysis allowed to explain for 53% of the variability in measured eBC, indicating that the several factors (e.g., traffic and meteorology) may contribute simultaneously to this proportion. Overall, this study will provide valuable input to the policy makers to mitigate eBC pollutant and its adverse effect on environment and human health. © 2022 Elsevier Ltd

13.
Sci Total Environ ; 871: 162129, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2235242

ABSTRACT

The effects brought by climate change and the pandemic upon worker health and wellbeing are varied and necessitate the identification and implementation of improved strategic interventions. This review aims, firstly, to assess how climate change affects occupational accidents, focusing on the impacts of extreme air temperatures and natural disasters; and, secondly, to analyze the role of the pandemic in this context. Our results show that the manifestations of climate change affect workers physically while on the job, psychologically, and by modifying the work environment and conditions; all these factors can cause stress, in turn increasing the risk of suffering a work accident. There is no consensus on the impact of the COVID-19 pandemic on work accidents; however, an increase in adverse mental effects on workers in contact with the public (specifically in healthcare) has been described. It has also been shown that this strain affects the risk of suffering an accident. During the pandemic, many people began to work remotely, and what initially appeared to be a provisional situation has been made permanent or semi-permanent in some positions and companies. However, we found no studies evaluating the working conditions of those who telework. In relation to the combined impact of climate change and the pandemic on occupational health, only publications focusing on the synergistic effect of heat due to the obligation to wear COVID-19-specific PPE, either outdoors or in poorly acclimatized indoor environments, were found. It is essential that preventive services establish new measures, train workers, and determine new priorities for adapting working conditions to these altered circumstances.


Subject(s)
COVID-19 , Occupational Health , Humans , COVID-19/epidemiology , Climate Change , Pandemics , Accidents
14.
Georgofili ; 18(Supplemento 2):38-44, 2021.
Article in Italian | CAB Abstracts | ID: covidwho-2218445

ABSTRACT

Spring frost events are predicted to increase due to climate change. Yield losses caused by late radiative frosts can be highly remarkable in many fruit species, mostly stone fruits, grapes and kiwi, and active protection means are part of a general need for adaptation in orchard management. The principle of using over canopy and under canopy irrigation is based on the property of water that, when freezing, releases heat. Technical and management tools able to magnify such effect have been developed and here described for under canopy application, when the icing of water sprinkled to orchard grass allows adequate increase of the air temperature at canopy level.

15.
Atmospheric Environment ; 295 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2176680

ABSTRACT

By using WRF-Chem coupled with a heterogeneous reaction mechanism for sulfate formation, this study investigated the impact of meteorological condition and emission changes on chemical species, atmospheric oxidizing capacity (AOC), and secondary aerosol formation during the COVID-19 lockdown period from 23 January to April 8, 2020, focusing on a severe haze event on 7-14 February. The model with the new sulfate formation scheme reasonably reproduces the spatial-temporal distribution of meteorological variables and chemical species, and significantly improves predictions for both sulfate and SO2 concentrations, as well as for PM2.5, ammonium, and nitrate to some extent. It is found that the adverse meteorological conditions were the main cause for the haze event formation, whereas emission reduction due to the lockdown somewhat decreased PM2.5 concentration on average in the Beijing-Tianjin-Hebei (BTH) region. Compared with the same period in 2019, increased surface air temperature and relative humidity (RH) and decreased planetary boundary layer height (PBLH) facilitated accumulation of pollutants and formation of secondary aerosols during the haze episode in 2020, whereas the emission reduction due to the lockdown led to decreases in SO2, NO2, primary PM2.5 (PPM2.5), black carbon (BC), primary organic aerosols (POA), nitrate and ammonium concentrations, but increases in O3, sulfate and secondary organic aerosol (SOA) concentrations, due to the combined effect of changes in emissions and AOC. Gas and aqueous phase oxidation of SO2 accounted for approximately 24% of sulfate formation, while the heterogeneous reaction of Mn-catalytic oxidation of SO2 on aerosol surfaces dominated sulfate formation (76%) during the haze episode in the BTH region. Both adverse meteorological conditions and emission reductions increased heterogeneous sulfate formation rate mainly through altering aerosol surface area (ASA), pH, and Mn2+ concentration. Chemical species varied diversely during the three subperiods before (Period-1, 15-22 January) and during the lockdown (Period-2, 23 January to 5 March and Period-3, 6 March to 8 April) over the BTH. NO2 concentration firstly decreased and then rebounded, whereas O3 concentration increased gradually from the Period-1 to Period-3. All aerosols except SOA decreased throughout the lockdown period, whereas SOA peaked in the Period-2 due to its strong sensitivity to increasing AOC. Sulfate concentration decreased from the Period-1 to Period-2, mainly due to more adverse meteorological conditions in the Period-1, although sulfate increased slightly due to increasing AOC in the Period-2. The large difference in the direction and magnitude of species variations during the COVID-19 lockdown indicates the complex interplay among meteorology, emission, and chemistry. Copyright © 2022 Elsevier Ltd

16.
Journal of Hazardous Materials ; Part A. 444 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2170572

ABSTRACT

People constantly move their heads during conversation, as such movement is an important non-verbal mode of communication. Head movement alters the direction of people's expired air flow, therefore affecting their conversational partners' level of exposure. Nevertheless, there is a lack of understanding of the mechanism whereby head movement affects people's exposure. In this study, a dynamic meshing method in computational fluid dynamics was used to simulate the head movement of a human-shaped thermal manikin. Droplets were released during the oral expiration periods of the source manikin, during which it was either motionless, was shaking its head or was nodding its head, while the head of a face-to-face target manikin remained motionless. The results indicate that the target manikin had a high level of exposure to respiratory droplets when the source manikin was motionless, whereas the target manikin's level of exposure was significantly reduced when the source manikin was shaking or nodding its head. The source manikin had the highest level of self-exposure when it was nodding its head and the lowest level of self-exposure when its head was motionless. People's level of exposure during close contact is highly variable, highlighting the need for further investigations in more realistic conversational scenarios. Copyright © 2022 Elsevier B.V.

17.
The American Heart Journal ; 254:246, 2022.
Article in English | ProQuest Central | ID: covidwho-2149198

ABSTRACT

A 72-year-old female patient presented to the emergency department with one week history of dry cough, sore throat, and dyspnea grade 3, and 9 hours history of retrosternal chest pain. The patient had normal pulse, temperature and blood pressure. She had bilateral decreased air entry, S1 and S2 heard normally and had no lower limb edema. The patient had free past medical and surgical history. Laboratory investigations and ECG were done. Laboratory investigations showed that the patient was infected with SARS-CoV-2, and also showed positive cardiac enzymes, low hemoglobin (10.4 g/dl), high WBCs (14.9) 10

18.
Build Environ ; 229: 109893, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2149422

ABSTRACT

The COVID-19 pandemic has significantly changed people's lifestyles, and wearing surgical masks in outdoor public spaces has become commonplace. However, few studies have explored the impact of wearing masks on outdoor thermal comfort in different seasons. From May 2021 to February 2022, a series of longitudinal experiments were conducted in Xiamen, China to examine the effect of wearing surgical masks on outdoor thermal comfort. Forty-two participants took part in the experiments with and without masks. During the experiments, the thermal perceptions of the subjects and environmental thermal parameters were collected. Differences in outdoor thermal comfort between subjects wearing masks and those not wearing masks were determined in summer, autumn, and winter. Results showed that 1) the subjects wearing masks had lower neutral temperatures, and this difference was particularly pronounced in summer and exacerbated by walking; 2) in warm environments, masks reduced thermal comfort, and discomfort associated with masks was worse when walking than when sitting; 3) wearing masks significantly worsened facial comfort and increased chest discomfort, as summer turned to winter, the impact of masks on facial comfort decreased; 4) radiation and air temperature were the environmental parameters with the greatest impact on outdoor thermal sensation. Subjects who wore masks preferred lower temperatures, radiation, and humidity, and higher wind speeds.

19.
Pediatric Diabetes Conference: 48th Annual Conference of the International Society for Pediatric and Adolescent Diabetes ISPAD ; 23(Supplement 31), 2022.
Article in English | EMBASE | ID: covidwho-2124563

ABSTRACT

The proceedings contain 335 papers. The topics discussed include: CGM initiation in youth with public insurance results in improvements in A1c and increased transition to hybrid closed loop systems;disengagement from advanced diabetes technologies during the covid-19 pandemic associates with worse short-term outcomes in the US T1D exchange quality improvement collaborative;the impact of daily mean air temperature on time in hypoglycemia in 1642 children and adolescents with type 1 diabetesclinically relevant?;the economic impact and cost saving following providing technology in the management of type 1 diabetes in a pediatric population in Saudi Arabia: what we learn?;postprandial glycemic excursion and optimal insulin pump dosing strategy following high-protein meals among children and adolescents with type 1 diabetes: a randomized cross-over study;safety of user-initiated intensification of insulin delivery using the Cambridge hybrid closed-loop algorithm;and association of time in range targets achievement with treatment modality in youths with type 1 diabetes: realworld data from the International SWEET Registry.

20.
Advances in Climate Change Research ; 2022.
Article in English | ScienceDirect | ID: covidwho-2094966

ABSTRACT

In order to know how surface air temperature (SAT) changes in East Asia under different emission scenarios after the COVID-19 outbreak, in this paper, we investigated the impacts of greenhouse gases (GHGs) and anthropogenic aerosols changes on SAT in East Asia by using the aerosol-climate coupled model BCC-AGCM 2.0_CUACE/Aero, combining with the post-pandemic emission scenarios proposed by Covid multi-Earth system model intercomparison project (CovidMIP scenarios for short, including fossil-fueled recovery, moderate green stimulus, strong green stimulus, hereinafter as FFF, MGG, SGG, respectively). We assessed the impacts of changes in GHGs and anthropogenic aerosols together and separately on SAT in East Asia and its typical subregions during 2020‒2050. The results show that by mid-21st-century, SAT in East Asia will increase by 0.81±0.083°C under Baseline (same as SSP2-4.5 scenario), i.e., SAT difference between 2045‒2050 and 2020‒2025), and there will be more intense warming in all the three scenarios in East Asia, in which the largest SAT difference (SAT-d) compared to Baseline is 0.33±0.11°C under SGG and the smallest SAT-d is 0.07±0.14°C under FFF. To further explore the mechanism of these SAT-d, we analyzed the trend of surface longwave and shortwave net radiation flux driven by GHGs and anthropogenic aerosols there. It is found that in early period (2020‒2035), the role of aerosol changes is bigger than that of GHG changes in dominating SAT-d, particularly sulfate, whose reduction will become the main contributor to SAT-d by affecting the net solar flux at surface. In later period (2036‒2050), because of GHGs’ longer atmospheric lifetime than aerosols, the role of decreasing GHGs concentrations will determine the drop in SAT-d through affecting the net longwave flux at surface.

SELECTION OF CITATIONS
SEARCH DETAIL